《物理学和工程学中的数学方法》

图书基本信息

书名：《物理学和工程学中的数学方法》
13位ISBN编号：9787506265591
10位ISBN编号：7506265591
出版时间：2003－11
出版社：世界图书出版公司
作者：K．F．Riley M．P．H obson et al．
页数： 1232
版权说明：本站所提供下载的PDF图书仅提供预览和简介以及在线试读，请支持正版图书。更多资源请访问：www．tushu000．com

内容概要

Since the publication of the first edition of thisbook，both through teaching the material it coversand asa result of receiving helpful commentsfrom colleagues，we have become aware of the desirability of changesin anumber of areas The most important of these isthat the mathematical preparation of current senior college and university entrantsisnow lessthorough than it used to be．To match this，we decided to include a preliminary chapter covering areassuch as polynomial equations，trigonometric identities，coordinategeometry，partial fractions， binomial expansions，necessary and sufficient condition and proof by induction and contradiction．

作者简介

KEN RILEY read Mathematicsat the U niversity of Cambridge and proceeded to aPh．D．there in theoretical and experimental nuclear physics．H ebecame aResearch Associate in elementary prticl physicsat Brookhaven，and then，having taken up a lectureship at

《物理学和工程学中的数学方法》

书籍目录

preface to the second edition
preface to the first edition
1 preliminary algebra
11 simplefunctionsand equations
polynomial equations，factorisation；properties of roots
12 trigonometric identities
single angle；compound－angles，double and half－angle identities
13coordinategeometry
14 partial fractions
complicationsand special cases
15binomial expansion
16 properties of binomial coefficients
17 some particular methodsof proof
proof by induction；proof by contradiction；necessary and sufficient conditions
18exercises
19hintsand answers
2 preliminary calculus
2．1differentiation
differentiation from first principles products；the chain rule；quotients；implicit differentiation；logarithmic differentiation；leibnitz＇theorem；special points of afunction：curvature：theoremsof differentiation

2.2 integration

．integration from first principles，the inverse of differentiation；by inspection；sinusoidal jhnctions；logarithmic integration；using partial fractions；ubstitution method；integration by parts；reduction formulaæ；infinite and improper integrals；plane polar coordinates；integral inequalities；applicationsof integration
23 exercises
24 hintsand answers
3complex numbersand hyperbolic functions
3．1 the need for complex numbers
3.2 manipulation of complex numbers
addition and subtraction；modulusand argument；multiplication；complex conjugate；division
3．3 polar representation of complex numbersmultiplication and division in polar form
3.4 de moivre＇stheorem
trigonometric identities，finding the nth rootsof unity：solving polynomial equations
3.5 complex logarithmsand complex powers
3.6 applicationsto differentiation and integration
3.7 hyperbolic functions
definitions，hyperbolic－trigonometric anal ogies，identities of hyperbolic functions solving hyperbolic equations， inverses of hyperbolic functions，calculus of hyperbolic functions
3．8exercises
3.9 hintsand answers
4 series and limits
4.1 series
4.2 summation of series
arithmetic series，geometric series，arithmetico－geometric series；thedifference method；seriesinvolving natural numbers，transformation of series
4．3convergence of infinite series
absolute and conditional convergence；seriescontaining only real positive terms，alternating seriestest

《物理学和工程学中的数学方法》

4．4operationswith series
4.5 power series
convergence of power series；operationswith power series
4．6taylor series
taylor＇stheorem；approximation errors，standard maclaurin series
4．7 evaluation of limits
4.8 exercises
4.9 hintsand answers

5 partial differentiation
5．1definition of the partial derivative
5.2 the total differential and total derivative
5.3 exact and inexact differentials
5.4 useful theorems of partial differentiation
5.5 the chain rule
5.6 change of variables
5.7 taylor＇stheorem for many－variable functions
5.8 stationary values of many－variablefunctions
5.9 stationary valuesunder constraints
5.10 envelopes

5．11 thermodynamic relations
5．12differentiation of integrals
5．13exercises
5．14hintsand answers
6 multiple integrals
6.1 double integrals
6.2 triple integrals

6．3applications of multiple integrals
areas and volumes，masses，centres of massand centroids，pappus＇theorems，momentsof inertia；mean valuesof functions
6.4 change of variables in multiple integrals
 propertiesof jacobians
6.5 exercises
6.6 hintsand answers

7 vector algebra
7.1 scalarsand vectors

7．2 addition and subtraction of vectors
7.3 multiplication by ascalar
7.4 basisvectorsand components
7.5 magnitude of a vector
7.6 multiplication of vectors
scalar product；vector product；scalar triple product；vector triple product
7.7 equationsof lines，planes and spheres
7.8 using vectorsto find distances
point to line；point to plane；line to line；lineto plane
7.9 reciprocal vectors
7.10 exercises
7.11 hints and answers

8 matricesand vector spaces

《物理学和工程学中的数学方法》

8.1 vector spaces
basisvectors，inner product；some uæeful inequalities
8.2 linear operators
8.3 matrices

8．4basic matrix algebra
matrix addition；multiplication by ascalar；matrix multiplication
8.5 functionsof matrices

8，6 the transpose of a matrix
8.7 the complex and hermitian conjugates of a matrix

8．8the trace of a matrix
8．9the determinant of amatrix
propertiesof determinants
8．10the inverse of amatrix
8．11 the rank of a matrix
8.12 special types of square matrix
diagonal；triangular；symmetric and antisymmetric ；orthogonal；hermitian and anti－hermitian；unitary；normal 8．13eigenvectorsand eigenvalues
oranormal matrix；of hermitian and anti～herrnitian matrices；oraunitary matrix；orageneral square matrix
8.14 determination of eigenvaluesand eigenvectors
degenerate eigenvalues
8.15 change of basisand similarity transformations
8.16 diagonalisation of matrices
8.17 quadratic and hermitian forms
stationary properties of the eigenvectors；quadratic surfaces
8.18 simultaneouslinear equations
range；null space； n simultaneouslinear equationsin n unknowns，singular value decomposition
8.19 exercises
8.20 hintsand answers

9 normal modes
9.1 typical oscillatory systems
9.2 symmetry and normal modes

9．3rayleigh－ritz method
9.4 exercises
9.5 hintsand answers

10 vector calculus
10．1 differentiation of vectors
composite vector expressions；differential of avector
10.2 integration of vectors
10.3 space curves
10.4 vector functionsof several arguments
10.5 surfaces
10.6 scalar and vector fields
10.7 vector operators
gradient of ascalar field：divergence of a vector field：curl of avector field
10.8 vector operator formulæ
vector operatorsacting on sumsand products，combinations of grad，div and curl
10.9 cylindrical and spherical polar coordinates
10.10 general curvilinear coordinates

10．11 exerciæs
10.12 hintsand answers

11 line，surface and volume integrals
111 line integrals
evaluating line integrals；physical examples；line integralswith respect to ascalar
112 connectivity of regions
113 green＇stheorem in a plane
114conservative fieldsand potentials
11.5 surface integrals
evaluating surface integrals；vector areas of surfaces；physical examples
116volume integrals
volumesof three dimensional regions
117 integral formsfor grad，div and curl
118divergencetheorem and related theorems
green＇stheorems；other related integral theorems，physical applications
119 stokes＇theorem and related theorems
related integral theorems physical applications
1110 exercises
1111 hints and answers
12 fourier series
121 the dirichlet conditions
12．2the fourier coefficients
12．3symmetry considerations
124discontinuousfunctions
125 non－periodic functions
126 integration and differentiation
12.7 complex fourier series

128 parseval＇stheorem
12．9 exercises
1210 hintsand answers
13integral transforms
13.1 fourier transforms
the uncertainty principle；fraunhofer diffraction：the dirac \＆－function：relation of the 6 function to fourier transforms，properties of fourier transjorms；odd and even functions；convolution and deconvolution；correlation
functionsand energy spectra；parseval＇stheorem；fourier transformsin higher dimensions
13.2 laplace transforms
laplace transforms of derivatives and integrals；other propertiesof laplace transforms
13.3 concluding remarks
13.4 exercises
13.5 hintsand answers

14 first－order ordinary differential equations
14．1 general form of solution
14.2 first－degree first－order equations
separable variable equations，exact equations；inexact equations，integrating factors；linear equations；
homogeneousequations，isobaric equations bernoulli＇sequation；miscellaneousequations
14．3higher－degreefirst－order equations
equationssoluble for p ；for x ；for y ；clairaut＇sequation
14．4 exercises
14．5hintsand answers
15 higher－order ordinary differential equations

15．1 linear equationswith constant coefficients
finding the complementary function $\mathrm{yc}(\mathrm{x})$ ：finding the particula integral $\mathrm{yp}(\mathrm{x})$ ；constructing the general solution $y e(x)+y p(x)$ ：linear recurrence relations laplace transform method
15.2 linear equationswith variable coefficients
the legendreand euler linear equations；exact equations；partially known complementary function；variation of parameters，green＇sfunctions，canonical form for second－order equations
15．3general ordinary differential equations
dependent variable absent；independent variable absent；non－linear exact equations；isobaric or homogeneous
equations，equationshomogeneousin x or y alone；equationshavingy $=$ æx asa solution
15.4 exercises
15.5 hints and answers

16 seriessolutionsof ordinary differential equations
16.1 second－order linear ordinary differential equations
ordinary and singular points
16.2 seriessolutionsabout an ordinary point
16.3 seriessolutionsabout a regular singular point
distinct rootsnot differing by an integer；repeated root of the indicial equation；distinct rootsdiffering by an integer 16.4 obtaining asecond solution
the wronskian method；the derivative method；seriesform of the second solution
16.5 polynomial solutions
16.6 legendre＇sequation
general solution for integer 1；properties of legendre polynomials
16.7 besersequation
general solution for non－integer v；general solution for integer v；properties of bessel functions
16．8general remarks
16.9 exercises

16．10hints and answers
17 eigenfunction methodsfor differential equations
17.1 sets of functions
some useful inequalities
17.2 adjoint and hermitian operators

17．3the properties of hermitian operators
reality of the eigenvalues；orthogonality of the eigenfunctions；construction of real eigenfunctions
17．4sturm－liouville equations
valid boundary conditions，putting an equation into sturm－liouvilleform
17．5 examples of sturm－liouville equations
legendre＇sequation；the associated legendre equation；bessel＇sequation；the simple harmonic equation；hermite＇s equation；laguerre＇sequation；chebyshev＇sequation
17.6 superposition of eigenfunctions green＇sfunctions
17.7 auseful generalisation

17．8exercises
17．9hintsand answers
18partial differential equations general and particular solutions
18.1 important partial differential equations
thewave equation；the diffusion equation；laplace＇sequation；poisson＇sequation；schrodinger＇sequation
18.2 general form of solution

18．3general and particular solutions
first－order equations，inhomogeneousequationsand problems，second－order equations
18．4the wave equation

《物理学和工程学中的数学方法》

18．5the diffusion equation
18.6 characteristics and the existence of solutions
first－order equations，second－order equations
18.7 uniqueness of solutions
18.8 exercises
18.9 hintsand answers

19 partial differential equations æparation of variablesand other methods
19.1 æpparation of variables thegeneral method
19.2 superposition of separated solutions
19.3 separation of variables in polar coordinates
laplace＇sequation in polar coordinates spherical harmonics other equationsin polar coordinates；solution by expansion；separation of variablesfor inhomogeneousequations
19.4 integral transform methods
19.5 inhomogeneousproblems green＇sfunctions
similaritiesto green＇sfunctionsfor ordinary differential equations general boundary－value problems dirichlet problems，neumann problems
19.6 exercises
19.7 hintsand answers

20 complex variables
20.1 functionsof acomplex variable

20．2the cauchy－riemann relations
20．3power seriesin a complex variable
20.4 some elementary functions
20.5 multivalued functionsand branch cuts
20.6 singularities and zeroes of complex functions
20.7 complex potentials
20.8 conformal transformations
20.9 applicationsofconformal transformations
20.10 complex integrals
20.11 cauchy＇stheorem
20.12 cauchy＇sintegral formula

20．13taylor and laurent series
20.14 residue theorem
20.15 location of zeroes
20.16 integral sof sinusoidal functions
20.17 some infinite integrals
20.18 integrals sof multivalued functions
20.19 summation of series
20.20 inverse laplace transform
20.21 exercises
20.22 hints and answers

21 tensors
211 some notation
212 change of basis
213 cartesian tensors
214 first－and zero－order cartesian tensors
21.5 second－and higher－order cartesian tensors

216the algebra of tensors
217 the quotient law

《物理学和工程学中的数学方法》

218thetensorsand

21.9 isotropic tensors

2110 improper rotationsand pseudotensors
2111 dual tensors
21．t2 physical applicationsof tensors
2113 integral theoremsfor tensors
2114 non－cartesian coordinates
2115themetric tensor
2116general coordinate transformationsand tensors
2117 relative tensors
21．18derivativesof basisvectorsand christoffel symbols
21．19 covariant differentiation
21.20 vector operators in tensor form

2121 absolute derivativesalong curves
21．22geodesics
2123 exercises
2124 hintsand answers
22 calculus of variations
22.1 the euler－lagrange equation
22.2 special cases
fdoesnot contain y explicitly；f doesnot contain x explicitly
22.3 some extensions
several dependent variables；several independent variables；higher－order derivatives variable end－points
22.4 constrained variation
22.5 physical variational principles
fermat＇sprinciple in optics；hamilton＇sprinciple in mechanics
22.6 general eigenvalue problems
22.7 estimation ofeigenvaluesand eigenfunctions
22.8 adjustment of parameters
22.9 exercises

22．10hintsand answers
23 integral equations
23．1 obtaining an integral equation from adifferential equation
23．2 types of integral equation
23．3operator notation and the existence of solutions
23.4 closed－form solutions
separable kernels，integral transform methods；differentiation
23.5 neumann series
23.6 fredholm theory
23.7 schmidt－hilbert theory

23．8exercises
23.9 hints and answers

24 group theory
24．1groups
definition of agroup；examplesof groups
24.2 finitegroups
24.3 non－abelian groups
24.4 permutation groups
24.5 mappingsbetween groups

《物理学和工程学中的数学方法》

24.6 subgroups
24.7 subdividing agroup
equivalence relationsand classes；congruence and cosets；conjugatesand classes
24．8 exercises
24.9 hints and answers

25 representation theory
25.1 dipole moments of molecules
25.2 choosing an appropriate formalism
25.3 equivalent representations
25.4 reducibility of a representation
25.5 the orthogonality theorem for irreducible representations
25.6 characters
orthogonality property of characters
25.7 counting irrepsusing characters
summation rulesfor irreps
25.8 construction of a character table

25．9group nomenclature
25.10 product representations
25.11 physical applications of group theory
bonding in molecules matrix elementsin quantum mechanics degeneracy of normal modes breaking of degeneracies
25．12exercises
25．13hintsand answers
26 probability
26.1 venn diagrams
26.2 probability
axiomsand theorems，conditional probability；bayes＇theorem
26.3 permutationsand combinations
26.4 random variablesand distributions
discrete random variables，continuousrandom variables
26.5 properties of distributions
mean：mode and median：variance and standard deviation：moments
central moments
26.6 functions of random variables

2617 generating functions
probability generating functions，moment generating functions；characteristic functions；cumulant generating functions
26.8 important discrete distributions
binomial；geometric；negativebinomial；hypergeometric ；poisson
26.9 important continuousdistributions
gaussian ：log－normah exponential；gamma；chi－squared；cauchy ；breitwigner ：uniform
26．10the central limit theorem
26．11joint distributions
discretebivariate；continuousbivariate；marginal and conditional distributions
26.12 properties of joint distributions
means；variances；covariance and correlation
26．13generating functionsfor joint distributions
26．14 transformation of variablesin joint distributions
26.15 important joint distributions

《物理学和工程学中的数学方法》

multinominah multivariategaussian
26.16 exerciæs
26.17 hintsand answers

27 statistics
27．1 experiments，samples and populations
27.2 sample statistics
averages，variance and standard deviation；moments，covariance and correlation
27．3estimatorsand sampling distributions
consistency，bias and efficiency；fisher＇sinequality：standard errors，confidence limits
27.4 some basic estimators
mean；variance：standard deviation；moments，covariance and correlation
27.5 maximum－likelihood method
ml estimator；trans］ormation invariance and bias；efficiency；errorsand confidence limits；bayesian interpretation；
large n behaviour；extended ml method
27．6the method of least squares
linear least squares，non－linear least squares
27.7 hypothesistesting
simple and composite hypotheess，statistical tests，neyman－pearson；generalised likelihood－ratio：student＇st：fisher＇s
f：goodnessof fit
27．8exercises
27.9 hintsand answers

28 numerical methods
28.1 algebraic and transcendental equations
rearrangement of the equation；linear interpolation；binary chopping；newton－raphson method
28.2 convergence of iteration schemes

28．3simultaneous linear equations
gaussian elimination；gauss æidel iteration；tridiagonal matrices
28.4 numerical integration
trapezium rule；simpson＇srule；gaussian integration；monte carlo methods
28.5 finite differences
28.6 differential equations
difference equations，taylor seriessolutions，prediction and correction；runge kuttamethods，isoclines
28.7 higher－order equations
28.8 partial differential equations
28.9 exercises

28．10hints and answers
appendix gamma，betaand error functions
a11 thegammafunction
al． 2 the betafunction
al．3theerror function
index

《物理学和工程学中的数学方法》

精彩短评

1，比较喜欢统计那部分，讲的非常精炼，忘记了随时拿出来看看马上就明白了。
2，内容丰富，该有的都有了，深入浅出，很难的问题说得很清楚，国内的教材什么时候才能达到这种水平啊，剑桥的东西就是不一样！强烈推荐工科理科的硕士博士们精读。
3，此书几乎是把整个大学所需的数学集合在一起，而不是传统的数理方法教材。在这一点上，我还是觉得读专门教材更划算一些。

版权说明
本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。
更多资源请访问：www．tushu000．com

