oot

gooooo

gougoogoon

1300 ISBNO [0 11 9787111341963

1000 ISBNUO O 0 7111341961

0000D0ODO2011-6

guoduooobooogo

0 OO O O O Stephen R. Schach

0 0 O e67
godoobboooogoopbFOb OO0 OOOOOO0O0OO0O0OoOoObOOooon

OOOO0O0OOQOwww.tushu000.com

Page 1



oot

ERERERN

gooboobobboooooobobobbtoooooobobbobboooooobobbbbbouog
gooooo
gooboobobboooooobobobbtodoodobobbbbooooooobbbbbooog
gobbobbboooooobobbbbbdooooobbbbbdooooobobbobbodagg
gboogsoogoboobooboboobooboboobooboboobbooobooboon
gobooo

goboboodd

e JO0O0ODOOWNLOODDOUDLDLDODODDUODLDbDOODOUOUODLDOODOODDOODIS8
gobboblobbougogouobobbuodooooobobbbooooooboboobooog
OO00000OWwWebODODOODOOOWeb30ODODOODOO

o IUUUOOODLDOLODLOULOLOOOODLDOD

o IUUUOOODODLOUOOOOODLDLDODO

o [IOUUIOOOLODODLDOOUUOOOO

Page 2



oot

ERERERN

StephenRO Schach 19720 D0 00O 0OO0DODO0ODOO0OOOOO9B3000O0O00DO0O0OODDOOOn
gudobobbtooooobobbogoooobbbbooooobbbooooooobn
gudobobbtogooobobbogooouobobbbooooobbbuoooooobn
gobobobobooodago

Page 3



oot

ERERERN

Preface iv

Chapter 1

The Scope of Software Engineering 1

Learning Objectives 1

1.1 Historical Aspects 2

1.2 Economic Aspects 5

1.3 Maintenance Aspects 6

1.3.1 Classical and Modern Views

of Maintenance 9

1.3.2 The Importance of Postdelivery Maintenance 10
1.4 Requirements, Analysis, and Design Aspects 12
1.5 Team Development Aspects 15

1.6 Why There Is No Planning Phase 16

1.7 Why There Is No Testing Phase 16

1.8 Why There Is No Documentation Phase 17

1.9 The Object-Oriented Paradigm 18

1.10 The Object-Oriented Paradigm in Perspective 22
1.11 Terminology 23

1.12 Ethical Issues 26

Chapter Review 27

For Further Reading 27

Key Terms 28

Problems 29

References 30

PART A

SOFTWARE ENGINEERING CONCEPTS 35
Chapter 2

Software Life-Cycle Models 37

Learning Objectives 37

2.1 Software Development in Theory 37

2.2 Winburg Mini Case Study 38

2.3 Lessons of the Winburg Mini Case Study 42
2.4 Teal Tractors Mini Case Study 42

2.5 Iteration and Incrementation 43

2.6 Winburg Mini Case Study Revisited 47

2.7 Risks and Other Aspects of Iteration and Incrementation 48
2.8 Managing Iteration and

Incrementation 51

2.9 Other Life-Cycle Models 52

2.9.1 Code-and-Fix Life-Cycle Model 52

2.9.2 Waterfall Life-Cycle Model 53

2.9.3 Rapid-Prototyping Life-Cycle Model 55
2.9.4 Open-Source Life-Cycle Model 56

2.9.5 Agile Processes 59

2.9.6 Synchronize-and-Stabilize Life-Cycle Model 62
2.9.7 Spiral Life-Cycle Model 62

2.10 Comparison of Life-Cycle Models 66

Page 4



oot

Chapter Review 67

For Further Reading 68

Key Terms 69

Problems 69

References 70

Chapter 3

The Software Process 74

Learning Obijectives 74

3.1 The Unifi ed Process 76

3.2 Iteration and Incrementation

within the Object-Oriented Paradigm 76

3.3 The Requirements Workfl ow 78

3.4 The Analysis Workfl ow 80

3.5 The Design Workfl ow 82

3.6 The Implementation Workfl ow 83

3.7 The Test Workfl ow 84

3.7.1 Requirements Artifacts 84

3.7.2 Analysis Artifacts 84

3.7.3 Design Artifacts 85

3.7.4 Implementation Artifacts 85

3.8 Postdelivery Maintenance 87

3.9 Retirement 88

3.10 The Phases of the Unifi ed Process 88

3.10.1 The Inception Phase 89

3.10.2 The Elaboration Phase 91

3.10.3 The Construction Phase 92

3.10.4 The Transition Phase 92

3.11 One- versus Two-Dimensional Life-Cycle Models 92
3.12 Improving the Software Process 94

3.13 Capability Maturity Models 95

3.14 Other Software Process Improvement Initiatives 98
3.15 Costs and Benefi ts of Software Process Improvement 99
Chapter Review 101

For Further Reading 102

Key Terms 102

Problems 103

References 104

Chapter 4

Teams 107

Learning Objectives 107

4.1 Team Organization 107

4.2 Democratic Team Approach 109

4.2.1 Analysis of the Democratic Team Approach 110
4.3 Classical Chief Programmer Team Approach 110
4.3.1 The New York Times Project 112

4.3.2 Impracticality of the Classical Chief Programmer Team Approach 113
4.4 Beyond Chief Programmer and Democratic Teams 113
4.5 Synchronize-and-Stabilize Teams 117

4.6 Teams for Agile Processes 118

Page 5



oot

4.7 Open-Source Programming Teams 118

4.8 People Capability Maturity Model 119

4.9 Choosing an Appropriate Team Organization 120
Chapter Review 121

For Further Reading 121

Key Terms 122

Problems 122

References 122

Chapter 5

The Tools of the Trade 124

Learning Objectives 124

5.1 Stepwise Refi nement 124

5.1.1 Stepwise Refi nement Mini Case Study 125

5.2 Cost— Benefi t Analysis 130

5.3 Divide-and-Conquer 132

5.4 Separation of Concerns 132

5.5 Software Metrics 133

5.6 CASE 134

5.7 Taxonomy of CASE 135

5.8 Scope of CASE 137

5.9 Software Versions 141

5.9.1 Revisions 141

5.9.2 Variations 142

5.10 Confi guration Control 143

5.10.1 Confi guration Control during Postdelivery Maintenance 145
5.10.2 Baselines 145

5.10.3 Confi guration Control during Development 146
5.11 Build Tools 146

5.12 Productivity Gains with CASE Technology 147
Chapter Review 149

For Further Reading 149

Key Terms 150

Problems 150

References 151

Chapter 6

Testing 154

Learning Objectives 154

6.1 Quality Issues 155

6.1.1 Software Quality Assurance 156

6.1.2 Managerial Independence 156

6.2 Non-Execution-Based Testing 157

6.2.1 Walkthroughs 158

6.2.2 Managing Walkthroughs 158

6.2.3 Inspections 159

6.2.4 Comparison of Inspections and Walkthroughs 161
6.2.5 Strengths and Weaknesses of Reviews 162
6.2.6 Metrics for Inspections 162

6.3 Execution-Based Testing 162

6.4 What Should Be Tested? 163

Page 6



oot

6.4.1 Utility 164

6.4.2 Reliability 164

6.4.3 Robustness 165

6.4.4 Performance 165

6.4.5 Correctness 166

6.5 Testing versus Correctness Proofs 167

6.5.1 Example of a Correctness Proof 167

6.5.2 Correctness Proof Mini Case Study 171
6.5.3 Correctness Proofs and Software Engineering 172
6.6 Who Should Perform Execution-Based Testing? 175
6.7 When Testing Stops 176

Chapter Review 176

For Further Reading 177

Key Terms 177

Problems 178

References 179

Chapter 7

From Modules to Objects 183

Learning Objectives 183

7.1 What Is a Module? 183

7.2 Cohesion 187

7.2.1 Coincidental Cohesion 187

7.2.2 Logical Cohesion 188

7.2.3 Temporal Cohesion 189

7.2.4 Procedural Cohesion 189

7.2.5 Communicational Cohesion 190

7.2.6 Functional Cohesion 190

7.2.7 Informational Cohesion 191

7.2.8 Cohesion Example 191

7.3 Coupling 192

7.3.1 Content Coupling 192

7.3.2 Common Coupling 193

7.3.3 Control Coupling 195

7.3.4 Stamp Coupling 195

7.3.5 Data Coupling 196

7.3.6 Coupling Example 197

7.3.7 The Importance of Coupling 198

7.4 Data Encapsulation 199

7.4.1 Data Encapsulation and Development 201
7.4.2 Data Encapsulation and Maintenance 202
7.5 Abstract Data Types 207

7.6 Information Hiding 209

7.7 Objects 211

7.8 Inheritance, Polymorphism, and Dynamic Binding 215
7.9 The Object-Oriented Paradigm 217
Chapter Review 220

For Further Reading 221

Key Terms 221

Problems 221

Page 7



oot

References 222

Chapter 8

Reusability and Portability 225

Learning Objectives 225

8.1 Reuse Concepts 226

8.2 Impediments to Reuse 228

8.3 Reuse Case Studies 229

8.3.1 Raytheon Missile Systems

Division 230

8.3.2 European Space Agency 231

8.4 Objects and Reuse 232

8.5 Reuse during Design and Implementation 232
8.5.1 Design Reuse 232

8.5.2 Application Frameworks 234

8.5.3 Design Patterns 235

8.5.4 Software Architecture 236

8.5.5 Component-Based Software Engineering 237
8.6 More on Design Patterns 237

8.6.1 FLIC Mini Case Study 238

8.6.2 Adapter Design Pattern 239

8.6.3 Bridge Design Pattern 240

8.6.4 Iterator Design Pattern 241

8.6.5 Abstract Factory Design Pattern 241

8.7 Categories of Design Patterns 245

8.8 Strengths and Weaknesses of Design Patterns 247
8.9 Reuse and the World Wide Web 248

8.10 Reuse and Postdelivery Maintenance 249
8.11 Portability 250

8.11.1 Hardware Incompatibilities 250

8.11.2 Operating System Incompatibilities 251
8.11.3 Numerical Software Incompatibilities 251
8.11.4 Compiler Incompatibilities 253

8.12 Why Portability? 255

8.13 Techniques for Achieving Portability 256
8.13.1 Portable System Software 257

8.13.2 Portable Application Software 257
8.13.3 Portable Data 258

8.13.4 Model-Driven Architecture 259
Chapter Review 259

For Further Reading 260

Key Terms 261

Problems 261

References 263

CHAPTER 9

Planning and Estimating 268

Learning Objectives 268

9.1 Planning and the Software Process 268

9.2 Estimating Duration and Cost 270

9.2.1 Metrics for the Size of a Product 272

Page 8



oot

9.2.2 Techniques of Cost Estimation 275

9.2.3 Intermediate COCOMO 278

9.2.4COCOMO 11 281

9.2.5 Tracking Duration and Cost Estimates 282

9.3 Components of a Software Project Management Plan 282
9.4 Software Project Management Plan Framework 284
9.5 IEEE Software Project Management Plan 286

9.6 Planning Testing 288

9.7 Planning Object-Oriented Projects 289

9.8 Training Requirements 290

9.9 Documentation Standards 291

9.10 CASE Tools for Planning and Estimating 292

9.11 Testing the Software Project Management Plan 292
Chapter Review 292

For Further Reading 292

Key Terms 293

Problems 294

References 295

PART B

THE WORKFLOWS OF THE

SOFTWARE LIFE CYCLE 299

Chapter 10

Key Material from Part A 301

Learning Objective 301

10.1 Software Development: Theory versus Practice 301
10.2 Iteration and Incrementation 302

10.3 The Unifi ed Process 306

10.4 Workfl ow Overview 307

10.5 Teams 307

10.6 Cost— Benefi t Analysis 308

10.7 Metrics 308

10.8 CASE 308

10.9 Versions and Confi gurations 309

10.10 Testing Terminology 309

10.11 Execution-Based and Non-Execution-Based Testing 309
10.12 Modularity 310

10.13 Reuse 310

10.14 Software Project Management Plan 310

Chapter Review 311

Key Terms 311

Problems 312

Chapter 11

Requirements 313

Learning Objectives 313

11.1 Determining What the Client Needs 313

11.2 Overview of the Requirements Workfl ow 314
11.3 Understanding the Domain 315

11.4 The Business Model 316

11.4.1 Interviewing 316

Page 9



oot

11.4.2 Other Techniques 317

11.4.3 Use Cases 318

11.5 Initial Requirements 319

11.6 Initial Understanding of the Domain: The MSG Foundation Case Study 320
11.7 Initial Business Model: The MSG Foundation Case Study 322

11.8 Initial Requirements: The MSG Foundation Case Study 326

11.9 Continuing the Requirements Workfl ow: The MSG Foundation Case Study 328
11.10 Revising the Requirements: The MSG Foundation Case Study 330
11.11 The Test Workfl ow: The MSG Foundation Case Study 338

11.12 The Classical Requirements Phase 347

11.13 Rapid Prototyping 348

11.14 Human Factors 349

11.15 Reusing the Rapid Prototype 351

11.16 CASE Tools for the Requirements Workfl ow 353

11.17 Metrics for the Requirements Workfl ow 353

11.18 Challenges of the Requirements Workfl ow 354

Chapter Review 355

For Further Reading 356

Key Terms 357

Case Study Key Terms 357

Problems 357

References 358

Chapter 12

Classical Analysis 360

Learning Objectives 360

12.1 The Specifi cation Document 360

12.2 Informal Specifi cations 362

12.2.1 Correctness Proof Mini Case Study Redux 363

12.3 Structured Systems Analysis 364

12.3.1 Sally’ s Software Shop Mini Case Study 364

12.4 Structured Systems Analysis: The MSG Foundation Case Study 372
12.5 Other Semiformal Techniques 373

12.6 Entity-Relationship Modeling 374

12.7 Finite State Machines 376

12.7.1 Finite State Machines: The Elevator Problem Case Study 378

12.8 Petri Nets 382

12.8.1 Petri Nets: The Elevator Problem Case Study 385

12.9 7 387

12.9.1 Z: The Elevator Problem Case Study 388

12.9.2 Analysis of Z 390

12.10 Other Formal Techniques 392

12.11 Comparison of Classical Analysis Techniques 392

12.12 Testing during Classical Analysis 393

12.13 CASE Tools for Classical Analysis 394

12.14 Metrics for Classical Analysis 395

12.15 Software Project Management Plan: The MSG Foundation Case Study 395
12.16 Challenges of Classical Analysis 396

Chapter Review 396

For Further Reading 397

Page 10



oot

Key Terms 398

Case Study Key Terms 398

Problems 398

References 400

Chapter 13

Object-Oriented Analysis 404

Learning Objectives 404

13.1 The Analysis Workfl ow 405

13.2 Extracting the Entity Classes 406

13.3 Object-Oriented Analysis: The Elevator Problem Case Study 407
13.4 Functional Modeling: The Elevator Problem Case Study 407

13.5 Entity Class Modeling: The Elevator Problem Case Study 410

13.5.1 Noun Extraction 411

13.5.2 CRC Cards 413

13.6 Dynamic Modeling: The Elevator Problem Case Study 414

13.7 The Test Workfl ow: Object-Oriented Analysis 417

13.8 Extracting the Boundary and Control Classes 424

13.9 The Initial Functional Model: The MSG Foundation Case Study 425
13.10 The Initial Class Diagram: The MSG Foundation Case Study 428
13.11 The Initial Dynamic Model: The MSG Foundation Case Study 430
13.12 Revising the Entity Classes: The MSG Foundation Case Study 432
13.13 Extracting the Boundary Classes: The MSG Foundation Case Study 434
13.14 Extracting the Control Classes: The MSG Foundation Case Study 435
13.15 Use-Case Realization: The MSG Foundation Case Study 435
13.15.1 Estimate Funds Available for Week Use Case 436

13.15.2 Manage an Asset Use Case 442

13.15.3 Update Estimated Annual Operating Expenses Use Case 446
13.15.4 Produce a Report Use Case 449

13.16 Incrementing the Class Diagram: The MSG Foundation Case Study 454
13.17 The Test Workfl ow: The MSG Foundation Case Study 456

13.18 The Specifi cation Document in the Unifi ed Process 456

13.19 More on Actors and Use Cases 457

13.20 CASE Tools for the Object-Oriented Analysis Workfl ow 458
13.21 Metrics for the Object-Oriented Analysis Workfl ow 459

13.22 Challenges of the Object-Oriented Analysis Workfl ow 459
Chapter Review 460

For Further Reading 461

Key Terms 462

Problems 462

References 463

Chapter 14

Design 465

Learning Objectives 465

14.1 Design and Abstraction 466

14.2 Operation-Oriented Design 466

14.3 Data Flow Analysis 467

14.3.1 Mini Case Study Word Counting 468

14.3.2 Data Flow Analysis Extensions 473

14.4 Transaction Analysis 473

Page 11



oot

14.5 Data-Oriented Design 475

14.6 Object-Oriented Design 476

14.7 Object-Oriented Design: The Elevator Problem Case Study 477
14.8 Object-Oriented Design: The MSG Foundation Case Study 481
14.9 The Design Workfl ow 483

14.10 The Test Workfl ow: Design 487

14.11 The Test Workfl ow: The MSG Foundation Case Study 488
14.12 Formal Techniques for Detailed Design 488

14.13 Real-Time Design Techniques 488

14.14 CASE Tools for Design 490

14.15 Metrics for Design 490

14.16 Challenges of the Design Workfl ow 491

Chapter Review 492

For Further Reading 493

Key Terms 493

Problems 494

References 495

Chapter 15

Implementation 498

Learning Objectives 498

15.1 Choice of Programming Language 498

15.2 Fourth-Generation Languages 501

15.3 Good Programming Practice 504

15.3.1 Use of Consistent and Meaningful VVariable Names 504
15.3.2 The Issue of Self-Documenting Code 505

15.3.3 Use of Parameters 507

15.3.4 Code Layout for Increased Readability 507

15.3.5 Nested if Statements 507

15.4 Coding Standards 509

15.5 Code Reuse 510

15.6 Integration 510

15.6.1 Top-down Integration 511

15.6.2 Bottom-up Integration 513

15.6.3 Sandwich Integration 513

15.6.4 Integration of Object-Oriented Products 514

15.6.5 Management of Integration 515

15.7 The Implementation Workfl ow 516

15.8 The Implementation Workfl ow: The MSG Foundation Case Study 516
15.9 The Test Workfl ow: Implementation 516

15.10 Test Case Selection 517

15.10.1 Testing to Specifi cations versus Testing to Code 517
15.10.2 Feasibility of Testing to Specifi cations 517

15.10.3 Feasibility of Testing to Code 518

15.11 Black-Box Unit-Testing Techniques 520

15.11.1 Equivalence Testing and Boundary Value Analysis 521
15.11.2 Functional Testing 522

15.12 Black-Box Test Cases: The MSG Foundation Case Study 523
15.13 Glass-Box Unit-Testing Techniques 525

15.13.1 Structural Testing: Statement, Branch, and Path Coverage 526

Page 12



oot

15.13.2 Complexity Metrics 527

15.14 Code Walkthroughs and Inspections 528

15.15 Comparison of Unit-Testing Techniques 528

15.16 Cleanroom 529

15.17 Potential Problems When Testing Objects 530

15.18 Management Aspects of Unit Testing 533

15.19 When to Reimplement Rather than Debug a Code Artifact 533
15.20 Integration Testing 535

15.21 Product Testing 535

15.22 Acceptance Testing 536

15.23 The Test Workfl ow: The MSG Foundation Case Study 537
15.24 CASE Tools for Implementation 537

15.24.1 CASE Tools for the Complete Software Process 538
15.24.2 Integrated Development Environments 538

15.24.3 Environments for Business Applications 539
15.24.4 Public Tool Infrastructures 540

15.24.5 Potential Problems with Environments 540

15.25 CASE Tools for the Test Workfl ow 540

15.26 Metrics for the Implementation Workfl ow 541

15.27 Challenges of the Implementation Workfl ow 542
Chapter Review 542

For Further Reading 543

Key Terms 544

Problems 545

References 547

Chapter 16

Postdelivery Maintenance 551

Learning Objectives 551

16.1 Development and Maintenance 551

16.2 Why Postdelivery Maintenance Is Necessary 553

16.3 What Is Required of Postdelivery Maintenance Programmers? 553
16.4 Postdelivery Maintenance Mini Case Study 555

16.5 Management of Postdelivery Maintenance 557

16.5.1 Defect Reports 557

16.5.2 Authorizing Changes to the Product 558

16.5.3 Ensuring Maintainability 559

16.5.4 Problem of Repeated Maintenance 559

16.6 Maintenance of Object-Oriented Software 560

16.7 Postdelivery Maintenance Skills versus

Development Skills 563

16.8 Reverse Engineering 563

16.9 Testing during Postdelivery Maintenance 564

16.10 CASE Tools for Postdelivery Maintenance 565

16.11 Metrics for Postdelivery Maintenance 566

16.12 Postdelivery Maintenance: The MSG Foundation Case Study 566
16.13 Challenges of Postdelivery Maintenance 566

Chapter Review 566

For Further Reading 567

Key Terms 567

Page 13



oot

Problems 567

References 568

Chapter 17

More on UML 571

Learning Objectives 571

17.1 UML Is Not a Methodology 571
17.2 Class Diagrams 572

17.2.1 Aggregation 573

17.2.2 Multiplicity 574

17.2.3 Composition 575

17.2.4 Generalization 576

17.2.5 Association 576

17.3 Notes 577

17.4 Use-Case Diagrams 577

17.5 Stereotypes 577

17.6 Interaction Diagrams 579

17.7 Statecharts 581

17.8 Activity Diagrams 583

17.9 Packages 585

17.10 Component Diagrams 586
17.11 Deployment Diagrams 586
17.12 Review of UML Diagrams 587
17.13 UML and Iteration 587
Chapter Review 587

For Further Reading 588

Key Terms 588

Problems 588

References 589

Chapter 18

Emerging Technologies 590

Learning Objectives 590

18.1 Aspect-Oriented Technology 591
18.2 Model-Driven Technology 593
18.3 Component-Based Technology 594
18.4 Service-Oriented Technology 594
18.5 Comparison of Service-Oriented and Component-Based Technology 595
18.6 Social Computing 596

18.7 Web Engineering 596

18.8 Cloud Technology 597

18.9 Web 3.0 598

18.10 Computer Security 598

18.11 Model Checking 598

18.12 Present and Future 599
Chapter Review 599

For Further Reading 599

Key Terms 599

References 600

Bibliography 601

Appendix A

Page 14



oot

Term Project: Chocoholics Anonymous 627

Appendix B

Software Engineering Resources 630

Appendix C

Requirements Workfl ow: The MSG Foundation Case Study 632
Appendix D

Structured Systems Analysis: The MSG Foundation Case Study 633
Appendix E

Analysis Workfl ow: The MSG Foundation Case Study 636

Appendix F

Software Project Management Plan: The MSG Foundation Case Study 637
Appendix G

Design Workfl ow: The MSG Foundation Case Study 642

Appendix H

Implementation Workfl ow: The MSG Foundation Case Study (C++ Version) 647
Appendix |

Implementation Workfl ow: The MSG Foundation Case Study (Java Version) 648
Appendix J

Test Workfl ow: The MSG Foundation Case Study 649

Author Index 651

Subject Index 654

Page 15



oot

ERERERN

000000 O Aword used on almost every page of this book is software. Software consists of not just code in
machine-readable form but also all the documentation that is an intrinsic com- ponent of every project. Software
includes the specification document, the design docu- ment, legal and accounting documents of all kinds, the
software project management plan, and other management documents as well as all types of manuals. Since the
1970s, the difference between a program and a system has become blurred. In the "good old days;' the distinction
was clear. A program was an autonomous piece of code, generally in the form of a deck of punched cards that
could be executed. A system was a related collection of programs. A system might consist of programs P, Q, R, and
S. Magnetic tape Twas mounted, and then program Pwas run. It caused a deck of data cards to be read in and
produced as output tapes T2 and Ta. Tape T2 then was rewound, and pro- gram Q was run, producing tape T4 as
output. Program R now merged tapes Ta and T4 into tape Ts; Ts served as input for program S, which printed a
series of reports.Compare that situation with a product, running on a machine with a front-end com- munications
processor and a back-end database manager, that performs real-time control of a steel mill. The single piece of
software contro] ling the steel mill does far more than the old-fashioned system, but in terms of the classic
definitions of program and system, this software undoubtedly is a program. To add to the confusion, the term
system now is also used to denote the hardware-software combination. For example, the flight control system in an
aircraft consists of both the in-flight computers and the software running on them. Depending on who is using the
term, the flight control system also may include the controls, such as the joystick, that send commands to the
computer and the parts of the aircraft, such as the wing flaps, controlled by the computer. Furthermore, within the
context of traditional software development, the term systems analysis refers to the first two phases [J requirements
and analysis phasesl] and systems design refers to the third phase [J design phase .To minimize confusion, this
book uses the term product to denote a nontrivial piece of software. There are two reasons' for this convention.
The first is simply to obviate the pro- gram versus system confusion by using a third term. The second reason is
more important. This book deals with the process of software production, that is, the way we produce soft- ware,
and the end result of a process is termed a product. Finally, the term system is used in its modem sense, that is, the
combined hardware and software, or as part of universally accepted phrases, such as operating system and
management information system.Two words widely used within the context of software engineering are
methodology and paradigm. In the 1970s, the word methodology began to be used in the sense of "a way of
developing a software product”; the word actually means the "science of meth- ods."

Page 16



Juoogd

ERERERN

Page 17



oot

ERERERN

1nogogooooon
oopoodouoooobobobbtooooooobbobbboDb bbb oUo o

gooooooo
b0 goboobbooboboobbod

Page 18



oot

ERERERN

guoooobboopbrOdooobobbgogoooobnbd

0000000 :www.tushu000.com

Page 19



