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000000 O Aword used on almost every page of this book is software. Software consists of not just code in
machine-readable form but also all the documentation that is an intrinsic com- ponent of every project. Software
includes the specification document, the design docu- ment, legal and accounting documents of all kinds, the
software project management plan, and other management documents as well as all types of manuals. Since the
1970s, the difference between a program and a system has become blurred. In the "good old days;' the distinction
was clear. A program was an autonomous piece of code, generally in the form of a deck of punched cards that
could be executed. A system was a related collection of programs. A system might consist of programs P, Q, R, and
S. Magnetic tape Twas mounted, and then program Pwas run. It caused a deck of data cards to be read in and
produced as output tapes T2 and Ta. Tape T2 then was rewound, and pro- gram Q was run, producing tape T4 as
output. Program R now merged tapes Ta and T4 into tape Ts; Ts served as input for program S, which printed a
series of reports.Compare that situation with a product, running on a machine with a front-end com- munications
processor and a back-end database manager, that performs real-time control of a steel mill. The single piece of
software contro] ling the steel mill does far more than the old-fashioned system, but in terms of the classic
definitions of program and system, this software undoubtedly is a program. To add to the confusion, the term
system now is also used to denote the hardware-software combination. For example, the flight control system in an
aircraft consists of both the in-flight computers and the software running on them. Depending on who is using the
term, the flight control system also may include the controls, such as the joystick, that send commands to the
computer and the parts of the aircraft, such as the wing flaps, controlled by the computer. Furthermore, within the
context of traditional software development, the term systems analysis refers to the first two phases [J requirements
and analysis phasesl] and systems design refers to the third phase [J design phase .To minimize confusion, this
book uses the term product to denote a nontrivial piece of software. There are two reasons' for this convention.
The first is simply to obviate the pro- gram versus system confusion by using a third term. The second reason is
more important. This book deals with the process of software production, that is, the way we produce soft- ware,
and the end result of a process is termed a product. Finally, the term system is used in its modem sense, that is, the
combined hardware and software, or as part of universally accepted phrases, such as operating system and
management information system.Two words widely used within the context of software engineering are
methodology and paradigm. In the 1970s, the word methodology began to be used in the sense of "a way of
developing a software product”; the word actually means the "science of meth- ods."
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