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0000 OO0 Thesolution to this problem is for the program object to be built from source at runtime.The
host program defines the devices within the context.Only at that point is it possible to know how to compile the
program source code to create the code for the kernels.As for the source code itself, OpenCL is quite flexible about
the form.In many cases, it is a regular string either statically defined in the host program,loaded from a file at
runtime,or dynamically generated inside the host program. Our context now includes OpenCL devices and a
program object from which the kernels are pulled for execution.Next we consider how the kernels interact with
memory.The detailed memory model used by OpenCL will be described later.For the sake of our discussion of the
context,we need to understand how the OpenCL memory works only at a high level. The crux of the matter is that
on a heterogeneous platform,there are often multiple address spaces to manage. The host has the familiar address
space expected on a CPU platform,but the devices may have a range of different memory architectures. To deal
with this situation,OpenCL introduces the idea of memory objects. These are explicitly defined on the host and
explicitly moved between the host and the OpenCL devices. This does put an extra burden on the programmer,but
it lets us support a much wider range of platforms.We now understand the context within an OpenCL
application. The context is the OpenCL devices,program objects,kernels,and memory objects that a kernel uses
when it executes.Now we can move on to how the host program issues commands to the OpenCL devices.
Command-Queues The interaction between the host and the OpenCL devices occurs through commands posted
by the host to the command-queue.These commands wait in the command-queue until they execute on the
OpenCL device.A command-queue is created by the host and attached to a single OpenCL device after the context
has been defined.
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