O OpenCLO O O O O

gooooo

OO0O0dOpenCLODOOO

130 ISBNLI O [J 9787030349637

1000 ISBNLI O [J 7030349636

00000 2012-7

goboboodgd

goooo

0 00603
gobbobobbodggooopebrOb0oooobbbobboooooobboboog

OOOO0O0OOQOwww.tushu000.com

Page 1



O OpenCLO O O O O

ERERERN

O0000bOo0oboooboobo:openCLOUDOO@OO)YDOODODDOOOpenCLD O ODODO
gogocPuOGPUDOOODOODDOODOOAppeD AMDO Intell IBMODDODOUODODOOODOO
gobobobbbooooouobobbbbtboooodoobbbbtboooouobbbb:OpenCL
OOooOo@ooO)oOopenCLDOODOOODODODODODODODOOODODODODODOD
gbooboooobgdopenCLODOODOODDOODOODDOOAPIOOpenCLCHDOD OO
gobbobbbuodggooobbbbbuoooogobbobbboooooobobbobboooog
gbooobooobobopenCLOOODOODDOOO
OO0000b0ob0obOoboogbo:openCcLUDOO@IOO)YODOOODOOOpenCLIAIOOODOO
gobboobbbuoooogobbbbboooogobobobboogg

Page 2



O OpenCLO O O O O

ERERERN

Page 3



O OpenCLO O O O O

ERERERN

ForewordPrefacePart | The OpenCL 1-1 Language and API1.An Introduction to OpenCLWhat Is OpenCL,or
Why You Need This BookOur Many-Core Future:Heterogeneous PlatformsSoftware in a Many-Core
WorldConceptual Foundations of OpenCLPlatform ModelExecution ModelMemory ModelProgramming
ModelsOpenCL and GraphicsThe Contents of OpenCLPlatform APIRuntime APIKernel Programming
LanguageOpenCL SummaryThe Embedded ProfileLearning OpenCL2.HelloWorld:An OpenCL
ExampleBuilding the ExamplesPrerequisitesMac OS X and Code:BlocksMicrosoft Windows and Visual
StudioLinux and EclipseHelloWorld ExampleChoosing an OpenCL Platform and Creating a ContextChoosing a
Device and Creating a Command-QueueCreating and Building a Program ObjectCreating Kernel and Memory
ObjectsExecuting a KernelChecking for Errors in OpenCL3.Platforms,Contexts,and DevicesOpenCL
PlatformsOpenCL DevicesOpenCL Contexts4.Programming with OpenCL CWriting a Data-Parallel Kernel Using
OpenCL CScalar Data TypesThe half Data TypeVector Data TypesVector LiteralsVector ComponentsOther Data
TypesDerived Typesimplicit Type ConversionsUsual Arithmetic Conversionsexplicit CastsExplicit
ConversionsReinterpreting Data as Another TypeVector OperatorsArithmetic OperatorsRelational and Equality
OperatorsBitwise OperatorsLogical OperatorsConditional OperatorShift OperatorsUnary OperatorsAssignment
OperatorQualifiersFunction QualifiersKernel Attribute QualifiersAddress Space QualifiersAccess QualifiersType
QualifierskeywordsPreprocessor Directives and MacrosPragma DirectivesMacrosRestrictions5.OpenCL C
Built-In FunctionsWork-Item FunctionsMath FunctionsFloating-Point PragmasFloating-Point ConstantsRelative
Error as ulpsinteger FunctionsCommon FunctionsGeometric FunctionsRelational FunctionsVector Data Load
and Store FunctionsSynchronization FunctionsAsync Copy and Prefetch FunctionsAtomic
FunctionsMiscellaneous Vector Functionsimage Read and Write FunctionsReading from an
ImageSamplersDetermining the Border ColorWriting to an ImageQuerying Image Information6.Programs and
KernelsProgram and Kernel Object OverviewProgram ObjectsCreating and Building ProgramsProgram Build
OptionsCreating Programs from BinariesManaging and Querying ProgramsKernel ObjectsCreating Kernel
Objects and Setting Kernel ArgumentsThread SafetyManaging and Querying Kernels7.Buffers and
Sub-BuffersMemory Obijects,Buffers,and Sub-Buffers OverviewCreating Buffers and Sub-BuffersQuerying Buffers
and Sub-BuffersReading,Writing,and Copying Buffers and Sub-BuffersMapping Buffers and Sub-Buffers8.Images
and Samplersimage and Sampler Object OverviewCreating Image Objectsimage FormatsQuerying for Image
SupportCreating Sampler ObjectsOpenCL C Functions for Working with ImagesTransferring Image
Objects9.EventsCommands,Queues,and Events OverviewEvents and Command-QueuesEvent ObjectsGenerating
Events on the HostEvents Impacting Execution on the HostUsing Events for ProfilingEvents Inside KernelsEvents
from Outside OpenCL10.Interoperability with OpenGLOpenCL/OpenGL Sharing OverviewQuerying for the
OpenGL Sharing ExtensionlInitializing an OpenCL Context for OpenGL InteroperabilityCreating OpenCL Buffers
from OpenGL BuffersCreating OpenCL Image Objects from OpenGL TexturesQuerying Information about
OpenGL ObjectsSynchronization between OpenGL and OpenCL11.Interoperability with
Direct3DDirect3D/OpenCL Sharing Overviewlnitializing an OpenCL Context for Direct3D
InteroperabilityCreating OpenCL Memory Objects from Direct3D Buffers and TexturesAcquiring and Releasing
Direct3D Objects in OpenCLProcessing a Direct3D Texture in OpenCLProcessing D3D Vertex Data in
OpenCL12.C++ Wrapper APIC++ Wrapper API OverviewC++ Wrapper API ExceptionsVector Add Example
Using the C++ Wrapper APIChoosing an OpenCL Platform and Creating a ContextChoosing a Device and
Creating a Command-QueueCreating and Building a Program ObjectCreating Kernel and Memory
ObjectsExecuting the Vector Add Kernel13.0OpenCL Embedded ProfileOpenCL Profile Overview64-Bit
IntegersimagesBuilt-In Atomic FunctionsMandated Minimum Single-Precision Floating-Point
CapabilitiesDetermining the Profile Supported by a Device in an OpenCL C ProgramPart Il OpenCL 1-1 Case
Studies14.Image HistogramComputing an Image HistogramParallelizing the Image HistogramAdditional
Optimizations to the Parallel Image HistogramComputing Histograms with Half-Float or Float VValues for Each
Channel15.Sobel Edge Detection FilterWhat Is a Sobel Edge Detection Filter?Implementing the Sobel Filter as an
OpenCL Kernell16.Parallelizing Dijkstra's Single-Source Shortest-Path Graph AlgorithmGraph Data

Page 4



O OpenCLO O O O O

StructuresKernelsLeveraging Multiple Compute Devices17.Cloth Simulation in the Bullet Physics SDKAnN
Introduction to Cloth SimulationSimulating the Soft BodyExecuting the Simulation on the CPUChanges
Necessary for Basic GPU ExecutionTwo-Layered BatchingOptimizing for SIMD Computation and Local
MemoryAdding OpenGL Interoperation18.Simulating the Ocean with Fast Fourier TransformAn Overview of the
Ocean ApplicationPhillips Spectrum GenerationAn OpenCL Discrete Fourier TransformDetermining 2D
DecompositionUsing Local MemoryDetermining the Sub-Transform SizeDetermining the Work-Group
SizeObtaining the Twiddle FactorsDetermining How Much Local Memory Is NeededAvoiding Local Memory
Bank ConflictsUsing ImagesA Closer Look at the FFT KernelA Closer Look at the Transpose Kernel19.Optical
FlowOptical Flow Problem OverviewSub-Pixel Accuracy with Hardware Linear InterpolationApplication of the
Texture CacheUsing Local MemoryEarly Exit and Hardware SchedulingEfficient Visualization with OpenGL
InteropPerformance20.Using OpenCL with PyOpenCLIntroducing PyOpenCLRunning the PylmageFilter2D
ExamplePylmageFilter2D CodeContext and Command-Queue CreationLoading to an Image ObjectCreating and
Building a ProgramSetting Kernel Arguments and Executing a KernelReading the Results21.Matrix Multiplication
with OpenCLThe Basic Matrix Multiplication AlgorithmA Direct Translation into OpenCLIncreasing the Amount
of Work per KernelOptimizing Memory Movement:Local MemoryPerformance Results and Optimizing the
Original CPU Code22.Sparse Matrix-Vector MultiplicationSparse Matrix-Vector
Multiplication(SpMV)AlgorithmDescription of This ImplementationTiled and Packetized Sparse Matrix
RepresentationHeader StructureTiled and Packetized Sparse Matrix Design ConsiderationsOptional Team
InformationTested Hardware Devices and ResultsAdditional Areas of OptimizationA.Summary of OpenCL
1.1The OpenCL Platform LayerContextsQuerying Platform Information and DevicesThe OpenCL
RuntimeCommand-QueuesBuffer ObjectsCreate Buffer ObjectsRead,Write,and Copy Buffer ObjectsMap Buffer
ObjectsManage Buffer ObjectsQuery Buffer ObjectsProgram ObjectsCreate Program ObjectsBuild Program
ExecutableBuild OptionsQuery Program ObjectsUnload the OpenCL CompilerKernel and Event ObjectsCreate
Kernel ObjectsKernel Arguments and Object QueriesExecute KernelsEvent ObjectsOut-of-Order Execution of
Kernels and Memory Object CommandsProfiling OperationsFlush and FinishSupported Data TypesBuilt-In
Scalar Data TypesBuilt-In Vector Data TypesOther Built-In Data TypesReserved Data TypesVector Component
AddressingPreprocessor Directives and MacrosSpecify Type AttributesMath ConstantsWork-Item Built-1n
Functionsinteger Built-In FunctionsCommon Built-In FunctionsMath Built-In FunctionsGeometric Built-In
FunctionsRelational Built-In FunctionsVector Data Load/Store FunctionsAtomic FunctionsAsync Copies and
Prefetch FunctionsSynchronization,Explicit Memory FenceMiscellaneous Vector Built-In Functionsimage Read
and Write Built-In FunctionsVector ComponentsVector Addressing EquivalenciesConversions and Type Casting
ExamplesOperatorsAddress Space QualifiersFunction Qualifiersimage ObjectsCreate Image ObjectsQuery List of
Supported Image FormatsCopy between Image,Buffer ObjectsMap and Unmap Image ObjectsRead,Write,Copy
Image ObjectsQuery Image Objectsimage FormatsAccess QualifiersSampler ObjectsSampler Declaration
FieldsOpenCL Device Architecture DiagramOpenCL/OpenGL Sharing APIsCL Buffer Objects>GL Buffer
ObjectsCL Image Objects>GL TexturesCL Image Objects>GL RenderbuffersQuery InformationShare ObjectsCL
Event Objects>GL Sync ObjectsCL Context>GL Context,SharegroupOpenCL/Direct3D 10 Sharing APIsIndex

Page 5



O OpenCLO O O O O

ERERERN

0000 OO0 Thesolution to this problem is for the program object to be built from source at runtime.The
host program defines the devices within the context.Only at that point is it possible to know how to compile the
program source code to create the code for the kernels.As for the source code itself, OpenCL is quite flexible about
the form.In many cases, it is a regular string either statically defined in the host program,loaded from a file at
runtime,or dynamically generated inside the host program. Our context now includes OpenCL devices and a
program object from which the kernels are pulled for execution.Next we consider how the kernels interact with
memory.The detailed memory model used by OpenCL will be described later.For the sake of our discussion of the
context,we need to understand how the OpenCL memory works only at a high level. The crux of the matter is that
on a heterogeneous platform,there are often multiple address spaces to manage. The host has the familiar address
space expected on a CPU platform,but the devices may have a range of different memory architectures. To deal
with this situation,OpenCL introduces the idea of memory objects. These are explicitly defined on the host and
explicitly moved between the host and the OpenCL devices. This does put an extra burden on the programmer,but
it lets us support a much wider range of platforms.We now understand the context within an OpenCL
application. The context is the OpenCL devices,program objects,kernels,and memory objects that a kernel uses
when it executes.Now we can move on to how the host program issues commands to the OpenCL devices.
Command-Queues The interaction between the host and the OpenCL devices occurs through commands posted
by the host to the command-queue.These commands wait in the command-queue until they execute on the
OpenCL device.A command-queue is created by the host and attached to a single OpenCL device after the context
has been defined.

Page 6



O OpenCLO O O O O

ERERERN
O0000bOooboobobooobD:openCLODOO@OO)YDOODODOOpenCLLIIDOODODOO

OOOCpenCLO DU 0OO0OOUODDOODOUOUOOUOUODDDODODDODOUOUOUOUUODDDLDDODDODOOOO
JO0obobo0bDOOOOAPIdOOpenCLCO OO OO0OOOUDODODDODOOOOOOO

Page 7



O OpenCLO O O O O

ERERERN

1o buooooobobboooaon

Page 8



O OpenCLO O O O O

ERERERN

guoooobboopbrOdooobobbgogoooobnbd

0000000 :www.tushu000.com

Page 9



