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前言

　　Purpose and Emphasis. Mechanics not only is the oldest branch of physics but was and still is the basis for all
of theoretical physics. Quantum mechanics can hardly be understood, perhaps cannot even be formulated, without
a good knowl- edge of general mechanics. Field theories such as electrodynamics borrow their formal framework
and many of their building principles from mechanics. In short, throughout the many modern developments of
physics where one frequently turns back to the principles of classical mechanics its model character is felt. For this
reason it is not surprising that the presentation of mechanics reflects to some ex- tent the development of modern
physics and that today this classical branch of theoretical physics is taught rather differently than at the time of
Arnold Som- merfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the theory and the
applications of partial-differential equations. Today, symmetries and invariance principles, the structure of the
space-time continuum, and the geomet- rical structure of mechanics play an important role. The beginner should
realize that mechanics is not primarily the art of describing block-and-tackles, collisions of billiard balls,
constrained motions of the cylinder in a washing machine, or bi- cycle riding. However fascinating such systems
may be, mechanics is primarily the field where one learns to develop general principles from which equations of
motion may be derived, to understand the importance of symmetries for the dy- namics, and, last but not least, to
get some practice in using theoretical tools and concepts that are essential for all branches of physics.　　Besides its
role as a basis for much of theoretical physics and as a training ground for physical concepts, mechanics is a
fascinating field in itself. It is not easy to master, for the beginner, because it has many different facets and its
structure is less homogeneous than, say, that of electrodynamics. On a first assault one usually does not fully realize
both its charm and its difficulty. Indeed, on returning to various aspects of mechanics, in the course of one's
studies, one will be surprised to discover again and again that it has new facets and new secrets. And finally, one
should be aware of the fact that mechanics is not a closed subject, lost forever in the archives of the nineteenth
century. As the reader will realize in Chap. 6, if he or she has not realized it already, mechanics is an exciting field of
research with many important questions of qualitative dynamics remaining unanswered.
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内容概要

《力学(第4版)》是弗洛里舍克编著的，Purpose and Emphasis. Mechanics not only is the oldest branch of
physics but was and still is the basis for all of theoretical physics. Quantum mechanics can hardly be understood,
perhaps cannot even be formulated, without a good knowl- edge of general mechanics.
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章节摘录

　　By assumption the transformation matrix is not singular; cf. （2.34）. This proves the proposition.　
　Another way of stating this result is this: the variational derivatives are covariant under diffeomorphic
transformations of the generalized coordinates.　　It is not correct, therefore, to state that the Lagrangian function
is "T - U". Although this is a natural form, in those cases where kinetic and potential energies are defined it is
certainly not the only one that describes a given problem. In gen- eral, L is a function of q and q', as well as of time t,
and no more. How to construct a Lagrangian function is more a question of the symmetries and invariances of the
physical system one wishes to describe. There may well be cases where there is no kinetic energy or no potential
energy, in the usual sense, but where a Lagrangian can be found, up to gauge transformations （2.33）, which gives
the correct equa- tions of motion. This is true, in particular, in applying the variational principle of Hamilton to
theories in which fields take over the role of dynamical variables. For such theories, the notion of kinetic and
potential parts in the Lagrangian must be generalized anyway, if they are defined at all.　　The proposition proved
above tells us that with any set of generalized coordi- nates there is an infinity of other, equivalent sets of variables.
Which set is chosen in practice depends on the peculiarities of the system under consideration. For ex- ample, a
clever choice will be one where as many integrals of the motion as possi- ble will be manifest. We shall say more
about this as well as about the geometric meaning of this multiplicity later. For the moment we note that the
transforma- tions must be diffeomorphisms. In transforming to new coordinates we wish to conserve the number
of degrees of freedom as well as the differential structure of the system. Only then can the physics be independent of
the special choice of variables.　　⋯⋯
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章节试读

1、《力学》的笔记-第4页

        The velocity vector is a tangent vector to the trajectory and therefore lies in the tangent space of the manifold of
position vectors, at the point r-&gt;. If r-&gt; belongs to R^3, this tangent space is also an R^3 and can be identified
with the space of positions. There are cases, however, where we have to distinguish between the position space and
its tangent spaces. A similar remark applies to the acceleration vector.上次见到tangent space 的概念是在GR 的
课堂上，当时并不是很明确其意义，这本经典力学的书中在最开始就提到这个概念，可认为其是一个
重要的数具，mark 一下备查，查到的相关内容补在后面。
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