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"A good book for a nice price!" (Monatshefte fu r Mathematik)[l [ "... for lecture courses that cover the classical
theory of nonlinear differential equations associated with Poincaré and Lyapunov and introduce the student to
the ideas of bifurcation theory and chaos this is an ideal text ..." (Mathematika) ] [ "The pedagogical style is
excellent, consisting typically of an insightful overview followed by theorems, illustrative examples and exercises."
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