应用随机过程

出版日期:2015-2
ISBN:9787115384746
作者:[美] Sheldon M. Ross
页数:784页

内容概要

Sheldon M. Ross
国际知名概率与统计学家,南加州大学工业工程与运筹系系主任。1968年博士毕业于斯坦福大学统计系,曾在加州大学伯克利分校任教多年。研究领域包括:随机模型、仿真模拟、统计分析、金融数学等。Ross教授著述颇丰,他的多种畅销数学和统计教材均产生了世界性的影响,如《概率论基础教程(第8版)》等。

书籍目录

1 Introduction to Probability Theory  1
1.1 Introduction  1
1.2 Sample Space and Events  1
1.3 Probabilities Defined on Events  4
1.4 Conditional Probabilities  6
1.5 Independent Events  9
1.6 Bayes’ Formula  11
Exercises  14
References  19
2 Random Variables  21
2.1 Random Variables  21
2.2 Discrete Random Variables  25
2.2.1 The Bernoulli Random Variable  26
2.2.2 The Binomial Random Variable  26
2.2.3 The Geometric Random Variable  28
2.2.4 The Poisson Random Variable  29
2.3 Continuous Random Variables  30
2.3.1 The Uniform Random Variable  31
2.3.2 Exponential Random Variables  32
2.3.3 Gamma Random Variables  33
2.3.4 Normal Random Variables  33
2.4 Expectation of a Random Variable  34
2.4.1 The Discrete Case  34
2.4.2 The Continuous Case  37
2.4.3 Expectation of a Function of a Random Variable  38
2.5 Jointly Distributed Random Variables  42
2.5.1 Joint Distribution Functions  42
2.5.2 Independent Random Variables  45
2.5.3 Covariance and Variance of Sums of Random Variables  46
2.5.4 Joint Probability Distribution of Functions of Random Variables  55
2.6 Moment Generating Functions  58
2.6.1 The Joint Distribution of the Sample Mean and Sample Variance from a Normal Population  66
2.7 The Distribution of the Number of Events that Occur 69
2.8 Limit Theorems  71
2.9 Stochastic Processes  77
Exercises  79
References  91
3 Conditional Probability and Conditional Expectation  93
3.1 Introduction  93
3.2 The Discrete Case 93
3.3 The Continuous Case  97
3.4 Computing Expectations by Conditioning  100
3.4.1 Computing Variances by Conditioning  111
3.5 Computing Probabilities by Conditioning  115
3.6 Some Applications  133
3.6.1 A List Model  133
3.6.2 A Random Graph 135
3.6.3 Uniform Priors, Polya’s Urn Model, and Bose—Einstein Statistics  141
3.6.4 Mean Time for Patterns   146
3.6.5 The k-Record Values of Discrete Random Variables  149
3.6.6 Left Skip Free Random Walks  152
3.7 An Identity for Compound Random Variables  157
3.7.1 Poisson Compounding Distribution   160
3.7.2 Binomial Compounding Distribution  161
3.7.3 A Compounding Distribution Related to theNegative Binomial   162
Exercises 163
4 Markov Chains   183
4.1 Introduction  183
4.2 Chapman–Kolmogorov Equations   187
4.3 Classification of States   194
4.4 Long-Run Proportions and Limiting Probabilities   204
4.4.1 Limiting Probabilities   219
4.5 Some Applications   220
4.5.1 The Gambler’s Ruin Problem  220
4.5.2 A Model for Algorithmic Efficiency  223
4.5.3 Using a Random Walk to Analyze a Probabilistic Algorithm for the Satisfiability Problem  226
4.6 Mean Time Spent in Transient States  231
4.7 Branching Processes  234
4.8 Time Reversible Markov Chains  237
4.9 Markov Chain Monte Carlo Methods  247
4.10 Markov Decision Processes  251
4.11 Hidden Markov Chains  254
4.11.1 Predicting the States  259
Exercises  261
References  275
5 The Exponential Distribution and the Poisson Process  277
5.1 Introduction 277
5.2 The Exponential Distribution  278
5.2.1 Definition  278
5.2.2 Properties of the Exponential Distribution  280
5.2.3 Further Properties of the Exponential Distribution  287
5.2.4 Convolutions of Exponential Random Variables   293
5.3 The Poisson Process   297
5.3.1 Counting Processes   297
5.3.2 Definition of the Poisson Process   298
5.3.3 Interarrival and Waiting Time Distributions   301
5.3.4 Further Properties of Poisson Processes   303
5.3.5 Conditional Distribution of the Arrival Times   309
5.3.6 Estimating Software Reliability   320
5.4 Generalizations of the Poisson Process   322
5.4.1 Nonhomogeneous Poisson Process 322
5.4.2 Compound Poisson Process   327
5.4.3 Conditional or Mixed Poisson Processes   332
5.5 Random Intensity Functions and Hawkes Processes   334
Exercises   338
References   356
6 Continuous-Time Markov Chains   357
6.1 Introduction   357
6.2 Continuous-Time Markov Chains   358
6.3 Birth and Death Processes   359
6.4 The Transition Probability Function Pij(t)   366
6.5 Limiting Probabilities   374
6.6 Time Reversibility   380
6.7 The Reversed Chain   387
6.8 Uniformization   393
6.9 Computing the Transition Probabilities   396
Exercises   398
References   407
7 Renewal Theory and Its Applications   409
7.1 Introduction   409
7.2 Distribution of N(t)   411
7.3 Limit Theorems and Their Applications   415
7.4 Renewal Reward Processes   427
7.5 Regenerative Processes   436
7.5.1 Alternating Renewal Processes   439
7.6 Semi-Markov Processes   444
7.7 The Inspection Paradox   447
7.8 Computing the Renewal Function   449
7.9 Applications to Patterns   452
7.9.1 Patterns of Discrete Random Variables   453
7.9.2 The Expected Time to a Maximal Run of Distinct Values   459
7.9.3 Increasing Runs of Continuous Random Variables   461
7.10 The Insurance Ruin Problem   462
Exercises   468
References   479
8 Queueing Theory 481
8.1 Introduction   481
8.2 Preliminaries   482
8.2.1 Cost Equations   482
8.2.2 Steady-State Probabilities   484
8.3 Exponential Models   486
8.3.1 A Single-Server Exponential Queueing System   486
8.3.2 A Single-Server Exponential Queueing System Having Finite Capacity   495
8.3.3 Birth and Death Queueing Models   499
8.3.4 A Shoe Shine Shop   505
8.3.5 A Queueing System with Bulk Service   507
8.4 Network of Queues   510
8.4.1 Open Systems   510
8.4.2 Closed Systems   514
8.5 The System M / G / 1   520
8.5.1 Preliminaries: Work and Another Cost Identity   520
8.5.2 Application of Work to M/G/1   520
8.5.3 Busy Periods   522
8.6 Variations on the M / G / 1   523
8.6.1 The M/G/1 with Random-Sized Batch Arrivals   523
8.6.2 Priority Queues   524
8.6.3 An M/G/1 Optimization Example   527
8.6.4 The M/G/1 Queue with Server Breakdown   531
8.7 The Model G / M / 1   534
8.7.1 The G / M / 1 Busy and Idle Periods   538
8.8 A Finite Source Model   538
8.9 Multiserver Queues   542
8.9.1 Erlang’s Loss System   542
8.9.2 The M/M/k Queue   544
8.9.3 The G/M/k Queue   544
8.9.4 The M/G/k Queue   546
Exercises   547
References   558
9 Reliability Theory   559
9.1 Introduction   559
9.2 Structure Functions   560
9.2. Minimal Path and Minimal Cut Sets   562
9.3 Reliability of Systems of Independent Components   565
9.4 Bounds on the Reliability Function   570
9.4.1 Method of Inclusion and Exclusion   570
9.4.2 Second Method for Obtaining Bounds on r (p)   578
9.5 System Life as a Function of Component Lives   580
9.6 Expected System Lifetime   587
9.6.1 An Upper Bound on the Expected Life of a Parallel System  591
9.7 Systems with Repair 593
9.7.1 A Series Model with Suspended Animation  597
Exercises  599
References  606
10 Brownian Motion and Stationary Processes  607
10.1 Brownian Motion  607
10.2 Hitting Times, Maximum Variable, and the Gambler’s Ruin Problem  611
10.3 Variations on Brownian Motion  612
10.3.1 Brownian Motion with Drift  612
10.3.2 Geometric Brownian Motion  612
10.4 Pricing Stock Options  614
10.4.1 An Example in Options Pricing  614
10.4.2 The Arbitrage Theorem  616
10.4.3 The Black-Scholes Option Pricing Formula  619
10.5 The Maximum of Brownian Motion with Drift  624
10.6 White Noise  628
10.7 Gaussian Processes  630
10.8 Stationary and Weakly Stationary Processes  633
10.9 Harmonic Analysis of Weakly Stationary Processes  637
Exercises  639
References  644
11 Simulation  645
11.1 Introduction  645
11.2 General Techniques for Simulating Continuous Random Variables  649
11.2.1 The Inverse Transformation Method  649
11.2.2 The Rejection Method  650
11.2. The Hazard Rate Method  654
11.3 Special Techniques for Simulating Continuous Random Variables  657
11.3.1 The Normal Distribution  657
11.3.2 The Gamma Distribution  660
11.3.3 The Chi-Squared Distribution  660
11.3.4 The Beta (n, m) Distribution  661
11.3.5 The Exponential Distribution—The Von Neumann Algorithm  662
11.4 Simulating from Discrete Distributions  664
11.4.1 The Alias Method  667
11.5 Stochastic Processes  671
11.5.1 Simulating a Nonhomogeneous Poisson Process  672
11.5.2 Simulating a Two-Dimensional Poisson Process  677
11.6 Variance Reduction Techniques  680
11.6.1 Use of Antithetic Variables  681
11.6.2 Variance Reduction by Conditioning  684
11.6.3 Control Variates  688
11.6.4 Importance Sampling  690
11.7 Determining the Number of Runs  694
11.8 Generating from the Stationary Distribution of a Markov Chain  695
11.8.1 Coupling from the Past  695
11.8.2 Another Approach  697
Exercises  698
References  705
Appendix: Solutions to Starred Exercises  707
Index  759

作者简介

本书是一部经典的随机过程著作, 叙述深入浅出、涉及面广。 主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。 特别是有关随机模拟的内容, 给随机系统运行的模拟计算提供了有力的工具。最新版还增加了不带左跳的随机徘徊和生灭排队模型等内容。本书约有700道习题, 其中带星号的习题还提供了解答。
本书可作为概率论与数理统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业随机过程基础课教材。


 应用随机过程下载



发布书评

 
 


 

外国儿童文学,篆刻,百科,生物科学,科普,初中通用,育儿亲子,美容护肤PDF图书下载,。 零度图书网 

零度图书网 @ 2024