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0000 OO0 Partofthe power of the Intel x86 is, the prefixes that can modify the execution ofthe following
instruction. One prefix can repeat the following instruction untila counter counts down to 0. Thus, to move data in
memory, it would seem thatthe natural instruction sequence is to use move with the repeat prefix to perform 32-bit
memory-to-memory moves. An alternative method, which uses the standard instructions found in all computers,
is to load the data into the registers and then store the registers back tomemory. This second version of this
program, with the code replicated to reduceloop overhead, copies at about 1.5 times faster. A third version, which
uses thelarger floating-point registers instead of the integer registers of the x86, copies atabout 2.0 times faster than
the complex move instruction. Fallacy: Write in assembly language to obtain the highest performance.At one time
compilers for programming languages produced naive instructionsequences; the increasing sophistication of
compilers means the gap betweencompiled code and code produced by hand is closing fast. In fact, to
competewith current compilers, the assembly language programmer needs to understandthe concepts in Chapters
4 and 5 thoroughly (processor pipelining and memoryhierarchy).
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