Jooguuood

gooooo

gotgouogooooog

1300 ISBNO [0 11 9787111412373

1000 ISBNU O J 7111412370

00000 2013-2

guoduooobooogo

00O 0O OO O David A. Patterson,[] [0 O John L. Hennessy

00 U 688
godoobboooogoopbFOb OO0 OOOOOO0O0OO0O0OoOoObOOooon

OOOO0O0OOQOwww.tushu000.com

Page 1

Jooguuood

ERERERN

Page 2

Jooguuood

ERERERN

David A.Patterson0 D 0D 000000 DO0O00OO0O0ODODOO0OOOODODOO0OOOODDIEEED ACM
0000000000000 000IEEED OJamesH. MulligagnD O OO O OODOOORISCOOOO
O00O0199B0OIEEED D000 0O0OORAIDDDOUIDOODD OO O 19990 IEEE Reynold Johnson
00O 00020000 O O John L. HennessyD [0 O John von NeumannJ [

JohnL. HennessyD OO D UOUOOOOIEEEDACMOO0ODOODDO0ODOOODDOODOOODODO
OO0OOHennessyD DODORISCOODOODOOODODODODO?20010 O Eckert-MauchlyD 0 O O O

(120010 Seymour Crayd O O O O OO 0O O O O O David A. Pattersond] [[0 200000 John von Neumann[]
O

Page 3

oo dogd

ERERERN

1 Computer Abstractions and Technology 1.1 Introduction 1.2 Below Your Program 1.3 Under the Covers 1.4
Performance 1.5 The Power Wall 1.6 The Sea Changeld The Switch from Uniprocessors to Multiprocessors 1.7
Real Stuff. MalJ nufacturing and Benchmarking the AMD Opteron X4 1.8 Fallacies and Pitfalls 1.9 Concluding
Remarks 1.10 Historical Perspective and Further Reading 1.11 Exercises 2 InstructionsC] l.anguage of the
Computer 2.1 Introduction 2.2 Operations of the Computer Hardware 2.3 Operands of the Computer Hardware
2.4 Signed and Unsigned Numbers 2.5 Representing Instructions in the Computer 2.6 Logical Operations 2.7
Instructions for Making Decisions 2.8 Supporting Procedures in Computer Hardware 2.9 Communicating with
People 2.10 MIPS Addressing for 32-Bit Immediates and Addresses 2.11 Parallelism and Instructions]
Synchronization 2.12 Translating and Starting a Program 2.13 A C Sort Example to Put It All Together2.14 Arrays
versus Pointers 2.15 Advanced MaterialCl Compiling C and Interpreting Java 2.16 Real Stuff] ARM Instructions
2.17 Real Stuffl] x86 Instructions 2.18 Fallacies and Pitfalls 2.19 Concluding Remarks 2.20 Historical Perspective
and Further Reading 2.21 Exerases 3 Arithmetic for Computers 3.1 Introduction 3.2 Addition and Subtraction 3.3
Multiplication 3.4 Division 3.5 Floating Point 3.6 Parallelism and Computer ArithmeticCl Associativity 3.7 Real
Stuff] Floating Point in the x86 3.8 Fallacies and Pitfalls 3.9 Concluding Remarks 3.10 Historical Perspective and
Further Reading 3.11 Exerases 4 The Processor 4.1 Introduction 4.2 Logic Design Conventions 4.3 Building a
Datapath 4.4 A Simple Implementation Scheme 4.5 An Overview of Pipelining 4.6 Pipelined Datapath and Control
4.7 Data Hazards: Forwarding versus Stalling 4.8 Control Hazards 4.9 Exceptions 4.10 Parallelism and Advanced
Instruction-Level Parallelism 4.11 Real Stuff the AMD Opteron X4 [Barcelonall Pipeline 4.12 Advanced Topic:
an Introduction to Digital Design Using a Hardware Design Language to Describe and Model a Pipeline and More
Pipelining Illustrations 4.13 Fallciaes and Pitfalls 4.14 Concluding Remarks 4.15 Historical Perspective and Further
Reading 4.16 Exerases 5 Large and Fast: Exploiting Memory Hierarchy 6 Storage and Other 1/0 Topics 7
Multicores, Multiprocessors, and Clusters A Graphics and Computing GPUs A-2 B Assemblers, Linkers, and the
SPIM Simulator B-2 C The Basics of Loglc Design C-2 D Mapping Control to Hardware D-2 e A Survey of RISC
Architectures for Desktop, Server, and Embedded Computers E-2 G Glossary G-1 F Further Reading FR-1

Page 4

Jooguuood

ERERERN

0000 OO0 Partofthe power of the Intel x86 is, the prefixes that can modify the execution ofthe following
instruction. One prefix can repeat the following instruction untila counter counts down to 0. Thus, to move data in
memory, it would seem thatthe natural instruction sequence is to use move with the repeat prefix to perform 32-bit
memory-to-memory moves. An alternative method, which uses the standard instructions found in all computers,
is to load the data into the registers and then store the registers back tomemory. This second version of this
program, with the code replicated to reduceloop overhead, copies at about 1.5 times faster. A third version, which
uses thelarger floating-point registers instead of the integer registers of the x86, copies atabout 2.0 times faster than
the complex move instruction. Fallacy: Write in assembly language to obtain the highest performance.At one time
compilers for programming languages produced naive instructionsequences; the increasing sophistication of
compilers means the gap betweencompiled code and code produced by hand is closing fast. In fact, to
competewith current compilers, the assembly language programmer needs to understandthe concepts in Chapters
4 and 5 thoroughly (processor pipelining and memoryhierarchy).

Page 5

Jooguuood

ERERERN

Page 6

Jooguuood

ERERERN

1o0dodootdododoooooooouodooooogn
000go.boobooooooooon..
Joooobooboooboooboooooooooooooooooooooooooooon
O00000000D00OCSAPPOODOODOODOODODODOODOOO
ADO0DODO0ODOO0ODOO0DOO0ODOO0ODOO0ODO0ODOO0OOO0obOODbDOn

5000000000000 00000O00DbO0DO0ODO0ODODO0OD0ODOD0O0DO00bOO0ODbDODbDODODO
OO00000OO0bOOoog

6000000000000 D0DO0000O0OODODODO Computer systems: A programmer’s perspective
Introduction to Computing Systems: From Bits and Gates to C and Beyond Computer... 0 0O O O

Page 7

Jooguuood

ERERERN

guoooobboopbrOdooobobbgogoooobnbd

0000000 :www.tushu000.com

Page 8

